Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(21): 14973-14981, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38737649

RESUMO

New semiconductors containing fluorene or fluorenone central fragments along with phosphonic acid anchoring groups were synthesized and investigated as electron transporting materials for possible application in photovoltaic devices. These derivatives demonstrate good thermal stability and suitable electrochemical properties for effective electron transport from perovskite, Sb2S3 and Sb2Se3 absorber layers. Self-assembled fluorene and fluorenone electron-transporting materials have shown improved substrate wettability, indicating bond formation between monolayer-forming compounds and the ITO, TiO2, Sb2S3, or Sb2Se3 surface. Additionally, investigated materials have compatible energetic band alignment and can passivate perovskite interface defects, which makes them interesting candidates for application in the n-i-p structure perovskite solar cell.

2.
Adv Mater ; 35(30): e2211742, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37191054

RESUMO

Metal halide perovskite based tandem solar cells are promising to achieve power conversion efficiency beyond the theoretical limit of their single-junction counterparts. However, overcoming the significant open-circuit voltage deficit present in wide-bandgap perovskite solar cells remains a major hurdle for realizing efficient and stable perovskite tandem cells. Here, a holistic approach to overcoming challenges in 1.8 eV perovskite solar cells is reported by engineering the perovskite crystallization pathway by means of chloride additives. In conjunction with employing a self-assembled monolayer as the hole-transport layer, an open-circuit voltage of 1.25 V and a power conversion efficiency of 17.0% are achieved. The key role of methylammonium chloride addition is elucidated in facilitating the growth of a chloride-rich intermediate phase that directs crystallization of the desired cubic perovskite phase and induces more effective halide homogenization. The as-formed 1.8 eV perovskite demonstrates suppressed halide segregation and improved optoelectronic properties.

3.
Chem Mater ; 33(17): 7017-7027, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34552307

RESUMO

A set of novel branched molecules bearing a different number of 3,6-bis(4,4'-dimethoxydiphenylamino)carbazole-based (Cz-OMeDPA) periphery arms linked together by aliphatic chains have been developed, and their performance has been tested in perovskite solar cells (PSCs). Electrical and photovoltaic properties have been evaluated with respect to the number of Cz-OMeDPA moieties and the nature of the linking aliphatic chain. The isolated compounds possess sufficient thermal stability and are amorphous having high glass-transition temperatures (>120 °C) minimizing the risk of direct layer crystallization. The highest hole-drift mobility of µ0 = 3.1 × 10-5 cm2 V-1 s-1 is comparable to that of the reference standard spiro-OMeTAD (4.1 × 10-5 cm2 V-1 s-1) under identical conditions. Finally, PSCs employing two new HTMs (2Cz-OMeDPA and 3Cz-OMeDPA-OH) bearing two and three substituted carbazole chromophores, linked by an aliphatic chain, show a performance of around 20%, which is on par with devices using spiro-OMeTAD and demonstrates slightly enhanced device stability.

4.
ACS Appl Energy Mater ; 4(12): 13696-13705, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34977473

RESUMO

The power conversion efficiency of perovskite solar cells (PSCs) has risen steadily in recent years; however, one important aspect of the puzzle remains to be solved-the long-term stability of the devices. We believe that understanding the underlying reasons for the observed instability and finding means to circumvent it is crucial for the future of this technology. Not only the perovskite itself but also other device components are susceptible to thermal degradation, including the materials comprising the hole-transporting layer. In particular, the performance-enhancing oxidized hole-transporting materials have attracted our attention as a potential weak component in the system. Therefore, we performed a series of experiments with oxidized spiro-OMeTAD to determine the stability of the material interfaced with five most popular perovskite compositions under thermal stress. It was found that oxidized spiro-OMeTAD is readily reduced to the neutral molecule upon interaction with all five perovskite compositions. Diffusion of iodide ions from the perovskite layer is the main cause for the reduction reaction which is greatly enhanced at elevated temperatures. The observed sensitivity of the oxidized spiro-OMeTAD to ion diffusion, especially at elevated temperatures, causes a decrease in the conductivity observed in the doped films of spiro-OMeTAD, and it also contributes significantly to a drop in the performance of PSCs operated under prolonged thermal stress.

5.
Science ; 370(6522): 1300-1309, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33303611

RESUMO

Tandem solar cells that pair silicon with a metal halide perovskite are a promising option for surpassing the single-cell efficiency limit. We report a monolithic perovskite/silicon tandem with a certified power conversion efficiency of 29.15%. The perovskite absorber, with a bandgap of 1.68 electron volts, remained phase-stable under illumination through a combination of fast hole extraction and minimized nonradiative recombination at the hole-selective interface. These features were made possible by a self-assembled, methyl-substituted carbazole monolayer as the hole-selective layer in the perovskite cell. The accelerated hole extraction was linked to a low ideality factor of 1.26 and single-junction fill factors of up to 84%, while enabling a tandem open-circuit voltage of as high as 1.92 volts. In air, without encapsulation, a tandem retained 95% of its initial efficiency after 300 hours of operation.

6.
Chemistry ; 24(39): 9910-9918, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29742303

RESUMO

The vast majority of the hole transporting materials require the use of chemical doping as an essential step for preparation of efficient perovskite solar cells. An oxidized organic hole-transporting material, obtained during a doping procedure, could potentially be one of the weak links in the device composition. It is not uncommon for the solar cell to heat up under summer sun; therefore, all device components must possess some degree of resistance to repetitive thermal stress. In the current publication, a series of oxidized hole-transporting materials have been synthesized and their long-term stability investigated. During thermal stability testing of the films, kept at 100 °C under an inert atmosphere, it was observed that oxidized HTMs start to degrade and partly revert to original unoxidized material. It is known that oxidized HTM, formed during doping, is responsible for the increased conductivity and ultimately for better efficiency of hole extraction process in the PSC device; therefore, observed instability of the oxidized HTMs in the thin films at elevated temperatures could be one of the causes of drop in conductivity reported for the doped spiro-OMeTAD. It could also potentially be one of the reasons why perovskite solar cells lose their efficiency under prolonged thermal stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...